- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Armendariz Property of $k[x,y]$ Modulo Monomial Ideals
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-38-422,
author = {Guo , YingDu , Xiankun and Xu , Xiaowei},
title = {Armendariz Property of $k[x,y]$ Modulo Monomial Ideals},
journal = {Communications in Mathematical Research },
year = {2022},
volume = {38},
number = {3},
pages = {422--430},
abstract = {
In this paper, we give equivalent conditions for the factor rings of the polynomial ring $k[x,y]$ modulo monomial ideals to be Armendariz rings, where $k$ is a field. For an ideal $I$ with 2 or 3 monomial generators, or $n$ homogeneous monomial generators, such that $k[x,y]/I$ is an Armendariz ring, we characterize the minimal generator set $G(I)$ of $I.$
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2022-0005}, url = {http://global-sci.org/intro/article_detail/cmr/20963.html} }
TY - JOUR
T1 - Armendariz Property of $k[x,y]$ Modulo Monomial Ideals
AU - Guo , Ying
AU - Du , Xiankun
AU - Xu , Xiaowei
JO - Communications in Mathematical Research
VL - 3
SP - 422
EP - 430
PY - 2022
DA - 2022/08
SN - 38
DO - http://doi.org/10.4208/cmr.2022-0005
UR - https://global-sci.org/intro/article_detail/cmr/20963.html
KW - Armendariz ring, polynomial ring, monomial ideal.
AB -
In this paper, we give equivalent conditions for the factor rings of the polynomial ring $k[x,y]$ modulo monomial ideals to be Armendariz rings, where $k$ is a field. For an ideal $I$ with 2 or 3 monomial generators, or $n$ homogeneous monomial generators, such that $k[x,y]/I$ is an Armendariz ring, we characterize the minimal generator set $G(I)$ of $I.$
Guo , YingDu , Xiankun and Xu , Xiaowei. (2022). Armendariz Property of $k[x,y]$ Modulo Monomial Ideals.
Communications in Mathematical Research . 38 (3).
422-430.
doi:10.4208/cmr.2022-0005
Copy to clipboard