- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
We study the Cauchy problem for nonlocal reaction diffusion equations with bistable nonlinearity in 1D spatial domain and investigate the asymptotic behaviors of solutions with a one-parameter family of monotonically increasing and compactly supported initial data. We show that for small values of the parameter the corresponding solutions decay to 0, while for large values the related solutions converge to 1 uniformly on compacts. Moreover, we prove that the transition from extinction (converging to 0) to propagation (converging to 1) is sharp. Numerical results are provided to verify the theoretical results.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2022-0003}, url = {http://global-sci.org/intro/article_detail/cmr/20962.html} }We study the Cauchy problem for nonlocal reaction diffusion equations with bistable nonlinearity in 1D spatial domain and investigate the asymptotic behaviors of solutions with a one-parameter family of monotonically increasing and compactly supported initial data. We show that for small values of the parameter the corresponding solutions decay to 0, while for large values the related solutions converge to 1 uniformly on compacts. Moreover, we prove that the transition from extinction (converging to 0) to propagation (converging to 1) is sharp. Numerical results are provided to verify the theoretical results.