- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
The aim of this paper is to systematize solutions of some systems of linear equations in terms of generalized inverses. As a significant application of the Moore-Penrose inverse, the best approximation solution to linear matrix equations (i.e. both least squares and the minimal norm) is considered. Also, characterizations of least squares solution and solution of minimum norm are given. Basic properties of the Drazin-inverse solution and the outer-inverse solution are present. Motivated by recent research, important least square properties of composite outer inverses are collected.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2021-0011}, url = {http://global-sci.org/intro/article_detail/cmr/19437.html} }The aim of this paper is to systematize solutions of some systems of linear equations in terms of generalized inverses. As a significant application of the Moore-Penrose inverse, the best approximation solution to linear matrix equations (i.e. both least squares and the minimal norm) is considered. Also, characterizations of least squares solution and solution of minimum norm are given. Basic properties of the Drazin-inverse solution and the outer-inverse solution are present. Motivated by recent research, important least square properties of composite outer inverses are collected.