- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $G$ be a multigraph with vertex set $V(G)$. Assume that a positive integer $f(v$) with $1 ≤ f(v) ≤ d(v)$ is associated with each vertex $v ∈ V$. An edge coloring of $G$ is called an $f$-edge cover-coloring, if each color appears at each vertex $v$ at least $f(v)$ times. Let $χ′_{fc}(G)$ be the maximum positive integer $k$ for which an $f$-edge cover-coloring with $k$ colors of $G$ exists. In this paper, we give a new lower bound of $χ′_{fc}(G)$, which is sharp.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19360.html} }Let $G$ be a multigraph with vertex set $V(G)$. Assume that a positive integer $f(v$) with $1 ≤ f(v) ≤ d(v)$ is associated with each vertex $v ∈ V$. An edge coloring of $G$ is called an $f$-edge cover-coloring, if each color appears at each vertex $v$ at least $f(v)$ times. Let $χ′_{fc}(G)$ be the maximum positive integer $k$ for which an $f$-edge cover-coloring with $k$ colors of $G$ exists. In this paper, we give a new lower bound of $χ′_{fc}(G)$, which is sharp.