- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Non-Simultaneous Blow-up Criteria for Localized Parabolic Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-25-379,
author = {Li , FengjieLiu , Bingchen and Zheng , Sining},
title = {Non-Simultaneous Blow-up Criteria for Localized Parabolic Equations},
journal = {Communications in Mathematical Research },
year = {2021},
volume = {25},
number = {4},
pages = {379--384},
abstract = {
This paper deals with blow-up solutions for parabolic equations coupled via localized exponential sources, subject to homogeneous Dirichlet boundary conditions. The criteria are proposed to identify simultaneous and non-simultaneous blow-up solutions. The related classification for the four nonlinear parameters in the model is optimal and complete.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19354.html} }
TY - JOUR
T1 - Non-Simultaneous Blow-up Criteria for Localized Parabolic Equations
AU - Li , Fengjie
AU - Liu , Bingchen
AU - Zheng , Sining
JO - Communications in Mathematical Research
VL - 4
SP - 379
EP - 384
PY - 2021
DA - 2021/07
SN - 25
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/cmr/19354.html
KW - non-simultaneous blow-up, simultaneous blow-up, critical exponent.
AB -
This paper deals with blow-up solutions for parabolic equations coupled via localized exponential sources, subject to homogeneous Dirichlet boundary conditions. The criteria are proposed to identify simultaneous and non-simultaneous blow-up solutions. The related classification for the four nonlinear parameters in the model is optimal and complete.
Li , FengjieLiu , Bingchen and Zheng , Sining. (2021). Non-Simultaneous Blow-up Criteria for Localized Parabolic Equations.
Communications in Mathematical Research . 25 (4).
379-384.
doi:
Copy to clipboard