- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, the authors consider the positive solutions of the system of the evolution $p$-Laplacian equations $$\begin{cases} u_t ={\rm div}(| ∇u |^{p−2} ∇u) + f(u, v), & (x, t) ∈ Ω × (0, T ), & \\ v_t = {\rm div}(| ∇v |^{p−2} ∇v) + g(u, v), & (x, t) ∈ Ω × (0, T) \end{cases}$$with nonlinear boundary conditions $$\frac{∂u}{∂η} = h(u, v), \frac{∂v}{∂η} = s(u, v),$$and the initial data $(u_0, v_0)$, where $Ω$ is a bounded domain in $\boldsymbol{R}^n$ with smooth boundary $∂Ω, p > 2$, $h(· , ·)$ and $s(· , ·)$ are positive $C^1$ functions, nondecreasing in each variable. The authors find conditions on the functions $f, g, h, s$ that prove the global existence or finite time blow-up of positive solutions for every $(u_0, v_0)$.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19348.html} }In this paper, the authors consider the positive solutions of the system of the evolution $p$-Laplacian equations $$\begin{cases} u_t ={\rm div}(| ∇u |^{p−2} ∇u) + f(u, v), & (x, t) ∈ Ω × (0, T ), & \\ v_t = {\rm div}(| ∇v |^{p−2} ∇v) + g(u, v), & (x, t) ∈ Ω × (0, T) \end{cases}$$with nonlinear boundary conditions $$\frac{∂u}{∂η} = h(u, v), \frac{∂v}{∂η} = s(u, v),$$and the initial data $(u_0, v_0)$, where $Ω$ is a bounded domain in $\boldsymbol{R}^n$ with smooth boundary $∂Ω, p > 2$, $h(· , ·)$ and $s(· , ·)$ are positive $C^1$ functions, nondecreasing in each variable. The authors find conditions on the functions $f, g, h, s$ that prove the global existence or finite time blow-up of positive solutions for every $(u_0, v_0)$.