- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
We show that certain satellite knots of every strongly negative-amphicheiral rational knot are rational-slice knots. This proof also shows that the 0-surgery manifold of a certain strongly negative amphicheiral knot such as the figure-eight knot bounds a compact oriented smooth 4-manifold homotopy equivalent to the 2-sphere such that a second homology class of the 4-manifold is represented by a smoothly embedded 2-sphere if and only if the modulo two reduction of it is zero.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19304.html} }We show that certain satellite knots of every strongly negative-amphicheiral rational knot are rational-slice knots. This proof also shows that the 0-surgery manifold of a certain strongly negative amphicheiral knot such as the figure-eight knot bounds a compact oriented smooth 4-manifold homotopy equivalent to the 2-sphere such that a second homology class of the 4-manifold is represented by a smoothly embedded 2-sphere if and only if the modulo two reduction of it is zero.