- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper we concern with the characterization of bounded linear operators $S$ acting on the weighted Bergman spaces on the unit ball. It is shown that, if $S$ satisfies the commutation relation $ST_{z_i} = T_{\overline{z}_i}S(i = 1, · · · , n)$, where $T_{z_i} = z_if$ and $T_{\overline{z}_i} = P(\overline{z}_if)$ where $P$ is the weighted Bergman projection, then $S$ must be a Hankel operator.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19302.html} }In this paper we concern with the characterization of bounded linear operators $S$ acting on the weighted Bergman spaces on the unit ball. It is shown that, if $S$ satisfies the commutation relation $ST_{z_i} = T_{\overline{z}_i}S(i = 1, · · · , n)$, where $T_{z_i} = z_if$ and $T_{\overline{z}_i} = P(\overline{z}_if)$ where $P$ is the weighted Bergman projection, then $S$ must be a Hankel operator.