- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
An $L(3, 2, 1)$-labeling of a graph $G$ is a function from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(u)−f(v)|≥3$ if $d_G(u, v)=1$, $|f(u)−f(v)|≥2$ if $d_G(u, v)=2$, and $|f(u)−f(v)|≥1$ if $d_G(u, v)=3$. The $L(3, 2, 1)$-labeling problem is to find the smallest number $λ_3(G)$ such that there exists an $L(3, 2, 1)$-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of $λ_3$ for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree $T$ such that $λ_3(T)$ attains the minimum value.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19284.html} }An $L(3, 2, 1)$-labeling of a graph $G$ is a function from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(u)−f(v)|≥3$ if $d_G(u, v)=1$, $|f(u)−f(v)|≥2$ if $d_G(u, v)=2$, and $|f(u)−f(v)|≥1$ if $d_G(u, v)=3$. The $L(3, 2, 1)$-labeling problem is to find the smallest number $λ_3(G)$ such that there exists an $L(3, 2, 1)$-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of $λ_3$ for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree $T$ such that $λ_3(T)$ attains the minimum value.