- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this work, we study the gradient projection method for solving a class of stochastic control problems by using a mesh free approximation approach to implement spatial dimension approximation. Our main contribution is to extend the existing gradient projection method to moderate high-dimensional space. The moving least square method and the general radial basis function interpolation method are introduced as showcase methods to demonstrate our computational framework, and rigorous numerical analysis is provided to prove the convergence of our meshfree approximation approach. We also present several numerical experiments to validate the theoretical results of our approach and demonstrate the performance meshfree approximation in solving stochastic optimal control problems.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2021-0022}, url = {http://global-sci.org/intro/article_detail/cmr/19266.html} }In this work, we study the gradient projection method for solving a class of stochastic control problems by using a mesh free approximation approach to implement spatial dimension approximation. Our main contribution is to extend the existing gradient projection method to moderate high-dimensional space. The moving least square method and the general radial basis function interpolation method are introduced as showcase methods to demonstrate our computational framework, and rigorous numerical analysis is provided to prove the convergence of our meshfree approximation approach. We also present several numerical experiments to validate the theoretical results of our approach and demonstrate the performance meshfree approximation in solving stochastic optimal control problems.