- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the modified one-dimensional Schrödinger equation:
$$(D_t-F(D))u=λ|u|^2u,$$
where F(ξ) is a second order constant coefficients classical elliptic symbol, and with smooth initial datum of size $ε≪1$. We prove that the solution is global-in-time, combining the vector fields method and a semiclassical analysis method introduced by Delort. Moreover, we get a one term asymptotic expansion for $u$ when $t→+∞$.
In this paper, we consider the modified one-dimensional Schrödinger equation:
$$(D_t-F(D))u=λ|u|^2u,$$
where F(ξ) is a second order constant coefficients classical elliptic symbol, and with smooth initial datum of size $ε≪1$. We prove that the solution is global-in-time, combining the vector fields method and a semiclassical analysis method introduced by Delort. Moreover, we get a one term asymptotic expansion for $u$ when $t→+∞$.