- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $M_i$ be a compact orientable 3-manifold, and $A_i$ a non-separating incompressible annulus on a component of $∂M_i$, say $F_i , i = 1, 2$. Let $h : A_1 → A_2$ be a homeomorphism, and $M = M_1 ∪_h M_2$, the annulus sum of $M_1$ and $M_2$ along $A_1$ and $A_2$. Suppose that $M_i$ has a Heegaard splitting $V_i ∪_{S_i} W_i$ with distance $d(S_i) ≥ 2g(M_i) + 2g(F_{3−i}) + 1, i = 1, 2$. Then $g(M) = g(M_1) + g(M_2)$, and the minimal Heegaard splitting of $M$ is unique, which is the natural Heegaard splitting of $M$ induced from $V_1 ∪_{S_1} W_1$ and $V_2 ∪_{S_2} W_2$.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19180.html} }Let $M_i$ be a compact orientable 3-manifold, and $A_i$ a non-separating incompressible annulus on a component of $∂M_i$, say $F_i , i = 1, 2$. Let $h : A_1 → A_2$ be a homeomorphism, and $M = M_1 ∪_h M_2$, the annulus sum of $M_1$ and $M_2$ along $A_1$ and $A_2$. Suppose that $M_i$ has a Heegaard splitting $V_i ∪_{S_i} W_i$ with distance $d(S_i) ≥ 2g(M_i) + 2g(F_{3−i}) + 1, i = 1, 2$. Then $g(M) = g(M_1) + g(M_2)$, and the minimal Heegaard splitting of $M$ is unique, which is the natural Heegaard splitting of $M$ induced from $V_1 ∪_{S_1} W_1$ and $V_2 ∪_{S_2} W_2$.