- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $\mathcal{N}$ be a nest on a Banach space $X$, and Alg$\mathcal{N}$ be the associated nest algebra. It is shown that if there exists a non-trivial element in $\mathcal{N}$ which is complemented in $X$, then $D = (L_n)_{n∈N}$ is a Lie higher derivation of Alg$\mathcal{N}$ if and only if each $L_n$ has the form $L_n(A) = τ_n(A) + h_n(A)I$ for all $A ∈ {\rm Alg}\mathcal{N}$, where $(τ_n)_{n∈N}$ is a higher derivation and $(h_n)_{n∈N}$ is a sequence of additive functionals satisfying $h_n([A, B]) = 0$ for all $A, B ∈ {\rm Alg}\mathcal{N}$ and all $n ∈ \boldsymbol{N}$.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19167.html} }Let $\mathcal{N}$ be a nest on a Banach space $X$, and Alg$\mathcal{N}$ be the associated nest algebra. It is shown that if there exists a non-trivial element in $\mathcal{N}$ which is complemented in $X$, then $D = (L_n)_{n∈N}$ is a Lie higher derivation of Alg$\mathcal{N}$ if and only if each $L_n$ has the form $L_n(A) = τ_n(A) + h_n(A)I$ for all $A ∈ {\rm Alg}\mathcal{N}$, where $(τ_n)_{n∈N}$ is a higher derivation and $(h_n)_{n∈N}$ is a sequence of additive functionals satisfying $h_n([A, B]) = 0$ for all $A, B ∈ {\rm Alg}\mathcal{N}$ and all $n ∈ \boldsymbol{N}$.