- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $(R, m)$ be a commutative Noetherian local ring, $I$ an ideal of $R$ and $M$ a finitely generated $R$-module. Let $\mathop{\rm lim}\limits_{\mathop{n} \limits ^{\longleftarrow}}H^i_m(M/I^nM)$ be the $i$th formal local cohomology module of $M$ with respect to $I$. In this paper, we discuss some properties of formal local cohomology modules $\mathop{\rm lim}\limits_{\mathop{n} \limits ^{\longleftarrow}}H^i_m(M/I^nM)$, which are analogous to the finiteness and Artinianness of local cohomology modules of a finitely generated module.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19155.html} }Let $(R, m)$ be a commutative Noetherian local ring, $I$ an ideal of $R$ and $M$ a finitely generated $R$-module. Let $\mathop{\rm lim}\limits_{\mathop{n} \limits ^{\longleftarrow}}H^i_m(M/I^nM)$ be the $i$th formal local cohomology module of $M$ with respect to $I$. In this paper, we discuss some properties of formal local cohomology modules $\mathop{\rm lim}\limits_{\mathop{n} \limits ^{\longleftarrow}}H^i_m(M/I^nM)$, which are analogous to the finiteness and Artinianness of local cohomology modules of a finitely generated module.