- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $R$ be an abelian ring. We consider a special subring $A_n$, relative to $α_2, · · · , α_n ∈ R{\rm End}(R)$, of the matrix ring $M_n(R)$ over a ring $R$. It is shown that the ring $A_n$ is a generalized right PP-ring (right zip ring) if and only if the ring $R$ is a generalized right PP-ring (right zip ring). Our results yield more examples of generalized right PP-rings and right zip rings.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19149.html} }Let $R$ be an abelian ring. We consider a special subring $A_n$, relative to $α_2, · · · , α_n ∈ R{\rm End}(R)$, of the matrix ring $M_n(R)$ over a ring $R$. It is shown that the ring $A_n$ is a generalized right PP-ring (right zip ring) if and only if the ring $R$ is a generalized right PP-ring (right zip ring). Our results yield more examples of generalized right PP-rings and right zip rings.