- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Weak Dissipative Structure for Compressible Navier-Stokes Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-26-375,
author = {Wang , Keyan},
title = {Weak Dissipative Structure for Compressible Navier-Stokes Equations},
journal = {Communications in Mathematical Research },
year = {2021},
volume = {26},
number = {4},
pages = {375--384},
abstract = {
This paper concerns the Cauchy problem for compressible Navier-Stokes equations. The weak dissipative structure is explored and a new proof for the classical solutions are shown to exist globally in time if the initial data is sufficiently small.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19135.html} }
TY - JOUR
T1 - Weak Dissipative Structure for Compressible Navier-Stokes Equations
AU - Wang , Keyan
JO - Communications in Mathematical Research
VL - 4
SP - 375
EP - 384
PY - 2021
DA - 2021/05
SN - 26
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/cmr/19135.html
KW - compressible Navier-Stokes equation, global existence, weak dissipation,
small initial data.
AB -
This paper concerns the Cauchy problem for compressible Navier-Stokes equations. The weak dissipative structure is explored and a new proof for the classical solutions are shown to exist globally in time if the initial data is sufficiently small.
Wang , Keyan. (2021). Weak Dissipative Structure for Compressible Navier-Stokes Equations.
Communications in Mathematical Research . 26 (4).
375-384.
doi:
Copy to clipboard