- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
The approximation of $|x|$ by rational functions is a classical rational problem. This paper deals with the rational approximation of the function $x^α$sgn$x$, which equals $|x|$ if $α = 1$. We construct a Newman type operator $r_n(x)$ and show $$\mathop{\rm min}\limits_{|x|≤1} \{|x^α{\rm sgn}x − r_n(x)| \} ∼ Cn^{−\frac{α}{2}}e^{−\sqrt{2nα}},$$ where $C$ is a constant depending on $α$.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19082.html} }The approximation of $|x|$ by rational functions is a classical rational problem. This paper deals with the rational approximation of the function $x^α$sgn$x$, which equals $|x|$ if $α = 1$. We construct a Newman type operator $r_n(x)$ and show $$\mathop{\rm min}\limits_{|x|≤1} \{|x^α{\rm sgn}x − r_n(x)| \} ∼ Cn^{−\frac{α}{2}}e^{−\sqrt{2nα}},$$ where $C$ is a constant depending on $α$.