- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $M_n$ be the algebra of all $n × n$ complex matrices and $gl(n, \mathbb{C})$ be the general linear Lie algebra, where $n ≥ 2$. An invertible linear map $ϕ: gl(n, \mathbb{C}) → gl(n, \mathbb{C})$ preserves solvability in both directions if both $ϕ$ and $ϕ^{−1}$ map every solvable Lie subalgebra of $gl(n, \mathbb{C})$ to some solvable Lie subalgebra. In this paper we classify the invertible linear maps preserving solvability on $gl(n, \mathbb{C})$ in both directions. As a sequence, such maps coincide with the invertible linear maps preserving commutativity on $M_n$ in both directions.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19067.html} }Let $M_n$ be the algebra of all $n × n$ complex matrices and $gl(n, \mathbb{C})$ be the general linear Lie algebra, where $n ≥ 2$. An invertible linear map $ϕ: gl(n, \mathbb{C}) → gl(n, \mathbb{C})$ preserves solvability in both directions if both $ϕ$ and $ϕ^{−1}$ map every solvable Lie subalgebra of $gl(n, \mathbb{C})$ to some solvable Lie subalgebra. In this paper we classify the invertible linear maps preserving solvability on $gl(n, \mathbb{C})$ in both directions. As a sequence, such maps coincide with the invertible linear maps preserving commutativity on $M_n$ in both directions.