- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19033.html} }In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.