- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
We present a numerical study of the long time behavior of approximation solution to the Extended Fisher–Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity $d(\mathcal{A}_{h,τ} ,\mathcal{A}) → 0$. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19028.html} }We present a numerical study of the long time behavior of approximation solution to the Extended Fisher–Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity $d(\mathcal{A}_{h,τ} ,\mathcal{A}) → 0$. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.