- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $H_n$ be an orientable handlebody of genus $n$. It has been proved that for $n$ not less than 2, there exists an annulus-busting curve in $∂H_n$. In the present paper, we prove that for $n$ not less than 2, there exists an essential simple closed curve $C$ in $∂H_n$ which intersects each essential planar surface in $H_n$ non-emptily. Furthermore, we show that for $n$ not less than 3, a pants-busting curve must also be an annulus-busting curve.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19022.html} }Let $H_n$ be an orientable handlebody of genus $n$. It has been proved that for $n$ not less than 2, there exists an annulus-busting curve in $∂H_n$. In the present paper, we prove that for $n$ not less than 2, there exists an essential simple closed curve $C$ in $∂H_n$ which intersects each essential planar surface in $H_n$ non-emptily. Furthermore, we show that for $n$ not less than 3, a pants-busting curve must also be an annulus-busting curve.