- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
A left ideal $I$ of a ring $R$ is small in case for every proper left ideal $K$ of $R, K +I ≠ R$. A ring $R$ is called left $PS$-coherent if every principally small left ideal $Ra$ is finitely presented. We develop, in this paper, $PS$-coherent rings as a generalization of $P$-coherent rings and $J$-coherent rings. To characterize $PS$-coherent rings, we first introduce $PS$-injective and $PS$-flat modules, and discuss the relation between them over some spacial rings. Some properties of left $PS$-coherent rings are also studied.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19015.html} }A left ideal $I$ of a ring $R$ is small in case for every proper left ideal $K$ of $R, K +I ≠ R$. A ring $R$ is called left $PS$-coherent if every principally small left ideal $Ra$ is finitely presented. We develop, in this paper, $PS$-coherent rings as a generalization of $P$-coherent rings and $J$-coherent rings. To characterize $PS$-coherent rings, we first introduce $PS$-injective and $PS$-flat modules, and discuss the relation between them over some spacial rings. Some properties of left $PS$-coherent rings are also studied.