- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider a risk model in which two types of individual claims, main claims and by-claims, are defined. Every by-claim is induced by the main claim randomly and may be delayed for one time period with a certain probability. The dividend policy that certain amount of dividends will be paid as long as the surplus is greater than a constant dividend barrier is also introduced into this delayed claims risk model. By means of the probability generating functions, formulae for the expected present value of total dividend payments prior to ruin are obtained for discrete-type individual claims. Explicit expressions for the corresponding results are derived for $K_n$ claim amount distributions. Numerical illustrations are also given.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19003.html} }In this paper, we consider a risk model in which two types of individual claims, main claims and by-claims, are defined. Every by-claim is induced by the main claim randomly and may be delayed for one time period with a certain probability. The dividend policy that certain amount of dividends will be paid as long as the surplus is greater than a constant dividend barrier is also introduced into this delayed claims risk model. By means of the probability generating functions, formulae for the expected present value of total dividend payments prior to ruin are obtained for discrete-type individual claims. Explicit expressions for the corresponding results are derived for $K_n$ claim amount distributions. Numerical illustrations are also given.