- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, we prove a generalization of Hyers' theorem on the stability of approximately additive mapping and a generalization of Badora's theorem on approximate ring homomorphism. We also obtain more general stability theorem, which gives stability theorems on Jordan and Lie homomorphisms. The proofs of the theorems in this paper are given following essentially the Hyers-Rassias approach to the stability of the functional equations connected with Ulam's problem.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/18992.html} }In this paper, we prove a generalization of Hyers' theorem on the stability of approximately additive mapping and a generalization of Badora's theorem on approximate ring homomorphism. We also obtain more general stability theorem, which gives stability theorems on Jordan and Lie homomorphisms. The proofs of the theorems in this paper are given following essentially the Hyers-Rassias approach to the stability of the functional equations connected with Ulam's problem.