- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, we study, via variational methods, the problem of scattering of time harmonic acoustic waves by unbounded inhomogeneous layers above a sound soft rough surface. We first propose a variational formulation and exploit it as a theoretical tool to prove the well-posedness of this problem when the media is non-absorbing for arbitrary wave number and obtain an estimate about the solution, which exhibit explicitly dependence of bound on the wave number and on the geometry of the domain. Then, based on the non-absorbing results, we show that the variational problem remains uniquely solvable when the layer is absorbing by means of a priori estimate of the solution. Finally, we consider the finite element approximation of the problem and give an error estimate.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/18989.html} }In this paper, we study, via variational methods, the problem of scattering of time harmonic acoustic waves by unbounded inhomogeneous layers above a sound soft rough surface. We first propose a variational formulation and exploit it as a theoretical tool to prove the well-posedness of this problem when the media is non-absorbing for arbitrary wave number and obtain an estimate about the solution, which exhibit explicitly dependence of bound on the wave number and on the geometry of the domain. Then, based on the non-absorbing results, we show that the variational problem remains uniquely solvable when the layer is absorbing by means of a priori estimate of the solution. Finally, we consider the finite element approximation of the problem and give an error estimate.