- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $R$ be a commutative Noetherian ring, $I$ and $J$ be two ideals of $R$, and $M$ be an $R$-module. We study the cofiniteness and finiteness of the local cohomology module $H^i_{I,J} (M)$ and give some conditions for the finiteness of Hom$_R(R/I, H^s_{ I,J} (M))$ and Ext$^1_R(R/I, H^s_{I,J} (M))$. Also, we get some results on the attached primes of $H^{{\rm dim}M}_{I,J} (M)$.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/18985.html} }Let $R$ be a commutative Noetherian ring, $I$ and $J$ be two ideals of $R$, and $M$ be an $R$-module. We study the cofiniteness and finiteness of the local cohomology module $H^i_{I,J} (M)$ and give some conditions for the finiteness of Hom$_R(R/I, H^s_{ I,J} (M))$ and Ext$^1_R(R/I, H^s_{I,J} (M))$. Also, we get some results on the attached primes of $H^{{\rm dim}M}_{I,J} (M)$.