- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Stochastic Nonlinear Beam Equations with Lévy Jump
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-30-23,
author = {Chen , Feng},
title = {Stochastic Nonlinear Beam Equations with Lévy Jump},
journal = {Communications in Mathematical Research },
year = {2021},
volume = {30},
number = {1},
pages = {23--32},
abstract = {
In this paper, we study stochastic nonlinear beam equations with Lévy jump, and use Lyapunov functions to prove existence of global mild solutions and asymptotic stability of the zero solution.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/18984.html} }
TY - JOUR
T1 - Stochastic Nonlinear Beam Equations with Lévy Jump
AU - Chen , Feng
JO - Communications in Mathematical Research
VL - 1
SP - 23
EP - 32
PY - 2021
DA - 2021/05
SN - 30
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/cmr/18984.html
KW - stochastic extensible beam equation, Lévy jump, Lyapunov function,
stability.
AB -
In this paper, we study stochastic nonlinear beam equations with Lévy jump, and use Lyapunov functions to prove existence of global mild solutions and asymptotic stability of the zero solution.
Chen , Feng. (2021). Stochastic Nonlinear Beam Equations with Lévy Jump.
Communications in Mathematical Research . 30 (1).
23-32.
doi:
Copy to clipboard