- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $α$ be a flow on a Banach algebra $\mathcal{B}$, and $t → u_t$ a continuous function from $\boldsymbol{R}$ into the group of invertible elements of $\mathcal{B}$ such that $u_sα_s(u_t) = u_{s+t}, s, t ∈ \boldsymbol{R}$. Then $β_t$ = Ad$u_t ◦ α_t$, $t ∈ \boldsymbol{R}$ is also a flow on $\mathcal{B}$, where Ad$u_t(B) \triangleq u_tBu^{−1}_t$ for any $B ∈ \mathcal{B}$. $β$ is said to be a cocycle perturbation of $α$. We show that if $α$, $β$ are two flows on a nest algebra (or quasi-triangular algebra), then $β$ is a cocycle perturbation of $α$. And the flows on a nest algebra (or quasi-triangular algebra) are all uniformly continuous.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/18982.html} }Let $α$ be a flow on a Banach algebra $\mathcal{B}$, and $t → u_t$ a continuous function from $\boldsymbol{R}$ into the group of invertible elements of $\mathcal{B}$ such that $u_sα_s(u_t) = u_{s+t}, s, t ∈ \boldsymbol{R}$. Then $β_t$ = Ad$u_t ◦ α_t$, $t ∈ \boldsymbol{R}$ is also a flow on $\mathcal{B}$, where Ad$u_t(B) \triangleq u_tBu^{−1}_t$ for any $B ∈ \mathcal{B}$. $β$ is said to be a cocycle perturbation of $α$. We show that if $α$, $β$ are two flows on a nest algebra (or quasi-triangular algebra), then $β$ is a cocycle perturbation of $α$. And the flows on a nest algebra (or quasi-triangular algebra) are all uniformly continuous.