- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 30 (2014), pp. 117-130.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
This paper deals with a heat system coupled via local and localized sources subject to null Dirichlet boundary conditions. In a previous paper of the authors, a complete result on the multiple blow-up rates was obtained. In the present paper, we continue to consider the blow-up sets to the system via a complete classification for the nonlinear parameters. That is the discussion on single point versus total blow-up of the solutions. It is mentioned that due to the influence of the localized sources, there is some substantial difficulty to be overcomed there to deal with the single point blow-up of the solutions.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2014.02.03}, url = {http://global-sci.org/intro/article_detail/cmr/18974.html} }This paper deals with a heat system coupled via local and localized sources subject to null Dirichlet boundary conditions. In a previous paper of the authors, a complete result on the multiple blow-up rates was obtained. In the present paper, we continue to consider the blow-up sets to the system via a complete classification for the nonlinear parameters. That is the discussion on single point versus total blow-up of the solutions. It is mentioned that due to the influence of the localized sources, there is some substantial difficulty to be overcomed there to deal with the single point blow-up of the solutions.