- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
One Nonparabolic End Theorem on Kähler Manifolds
Commun. Math. Res., 30 (2014), pp. 237-244.
Published online: 2021-05
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-30-237,
author = {Zhu , Peng},
title = {One Nonparabolic End Theorem on Kähler Manifolds},
journal = {Communications in Mathematical Research },
year = {2021},
volume = {30},
number = {3},
pages = {237--244},
abstract = {
In this paper, the complete noncompact Kähler manifolds satisfying the weighted Poincaré inequality are considered and one nonparabolic end theorem which generalizes Munteanu's result is obtained.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2014.03.05}, url = {http://global-sci.org/intro/article_detail/cmr/18964.html} }
TY - JOUR
T1 - One Nonparabolic End Theorem on Kähler Manifolds
AU - Zhu , Peng
JO - Communications in Mathematical Research
VL - 3
SP - 237
EP - 244
PY - 2021
DA - 2021/05
SN - 30
DO - http://doi.org/10.13447/j.1674-5647.2014.03.05
UR - https://global-sci.org/intro/article_detail/cmr/18964.html
KW - nonparabolic end, weighted Poincaré inequality, Kähler manifold.
AB -
In this paper, the complete noncompact Kähler manifolds satisfying the weighted Poincaré inequality are considered and one nonparabolic end theorem which generalizes Munteanu's result is obtained.
Zhu , Peng. (2021). One Nonparabolic End Theorem on Kähler Manifolds.
Communications in Mathematical Research . 30 (3).
237-244.
doi:10.13447/j.1674-5647.2014.03.05
Copy to clipboard