- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 30 (2014), pp. 320-328.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
Let $_H\mathcal{L}^B$ be the category of generalized Long modules, that is, $H$-modules and $B$-comodules over Hopf algebras $B$ and $H$. We describe a new Turaev braided group category over generalized Long module $_H\mathcal{L}^B(\mathcal{F} (π))$ where the opposite group $\mathcal{F} (π)$ of the semidirect product of the opposite group $π^{op}$ of a group $π$ by $π$. As an application, we show that this is a Turaev braided group-category $_H\mathcal{L}^B$ for a quasitriangular Turaev group-coalgebra $H$ and a coquasitriangular Turaev group-algebra $B$.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2014.04.05}, url = {http://global-sci.org/intro/article_detail/cmr/18956.html} }Let $_H\mathcal{L}^B$ be the category of generalized Long modules, that is, $H$-modules and $B$-comodules over Hopf algebras $B$ and $H$. We describe a new Turaev braided group category over generalized Long module $_H\mathcal{L}^B(\mathcal{F} (π))$ where the opposite group $\mathcal{F} (π)$ of the semidirect product of the opposite group $π^{op}$ of a group $π$ by $π$. As an application, we show that this is a Turaev braided group-category $_H\mathcal{L}^B$ for a quasitriangular Turaev group-coalgebra $H$ and a coquasitriangular Turaev group-algebra $B$.