- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 31 (2015), pp. 211-221.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
Pseudopolar rings are closely related to strongly $π$-regular rings, uniquely strongly clean rings and semiregular rings. In this paper, we investigate pseudopolarity of generalized matrix rings $K_s(R)$ over a local ring $R$. We determine the conditions under which elements of $K_s(R)$ are pseudopolar. Assume that $R$ is a local ring. It is shown that $\boldsymbol{A}∈ K_s(R)$ is pseudopolar if and only if $\boldsymbol{A}$ is invertible or $\boldsymbol{A}^2 ∈ J(K_s(R))$ or $\boldsymbol{A}$ is similar to a diagonal matrix $\begin{bmatrix} u & 0 \\ 0 & j \end{bmatrix}$, where $l_u −r_j$ and $l_j −r_u$ are injective and $u ∈ U(R)$ and $j ∈ J(R)$. Furthermore, several equivalent conditions for $K_s(R)$ over a local ring $R$ to be pseudopolar are obtained.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2015.03.03}, url = {http://global-sci.org/intro/article_detail/cmr/18922.html} }Pseudopolar rings are closely related to strongly $π$-regular rings, uniquely strongly clean rings and semiregular rings. In this paper, we investigate pseudopolarity of generalized matrix rings $K_s(R)$ over a local ring $R$. We determine the conditions under which elements of $K_s(R)$ are pseudopolar. Assume that $R$ is a local ring. It is shown that $\boldsymbol{A}∈ K_s(R)$ is pseudopolar if and only if $\boldsymbol{A}$ is invertible or $\boldsymbol{A}^2 ∈ J(K_s(R))$ or $\boldsymbol{A}$ is similar to a diagonal matrix $\begin{bmatrix} u & 0 \\ 0 & j \end{bmatrix}$, where $l_u −r_j$ and $l_j −r_u$ are injective and $u ∈ U(R)$ and $j ∈ J(R)$. Furthermore, several equivalent conditions for $K_s(R)$ over a local ring $R$ to be pseudopolar are obtained.