- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 31 (2015), pp. 345-350.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
In this paper, we discuss a kind of Hermitian inner product — symplectic inner product, which is different from the original inner product — Euclidean inner product. According to the definition of symplectic inner product, the codes under the symplectic inner product have better properties than those under the general Hermitian inner product. Here we present the necessary and sufficient condition for judging whether a linear code $C$ over $F_p$ with a generator matrix in the standard form is a symplectic self-dual code. In addition, we give a method for constructing a new symplectic self-dual codes over $F_p$, which is simpler than others.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2015.04.06}, url = {http://global-sci.org/intro/article_detail/cmr/18916.html} }In this paper, we discuss a kind of Hermitian inner product — symplectic inner product, which is different from the original inner product — Euclidean inner product. According to the definition of symplectic inner product, the codes under the symplectic inner product have better properties than those under the general Hermitian inner product. Here we present the necessary and sufficient condition for judging whether a linear code $C$ over $F_p$ with a generator matrix in the standard form is a symplectic self-dual code. In addition, we give a method for constructing a new symplectic self-dual codes over $F_p$, which is simpler than others.