- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 31 (2015), pp. 298-310.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
In this paper, a predator-prey system with two discrete delays and stage structure for both the predator and the prey is investigated. The dynamical behaviors such as local stability and local Hopf bifurcation are analyzed by regarding the possible combinations of the two delays as bifurcating parameter. Some explicit formulae determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form method and the center manifold theory. Finally, numerical simulations are presented to support the theoretical analysis.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2015.04.02}, url = {http://global-sci.org/intro/article_detail/cmr/18912.html} }In this paper, a predator-prey system with two discrete delays and stage structure for both the predator and the prey is investigated. The dynamical behaviors such as local stability and local Hopf bifurcation are analyzed by regarding the possible combinations of the two delays as bifurcating parameter. Some explicit formulae determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form method and the center manifold theory. Finally, numerical simulations are presented to support the theoretical analysis.