- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 31 (2015), pp. 289-297.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
Let $\mathcal{L} = −∆ + V$ be a Schrödinger operator on $\boldsymbol{R}^n , n > 3$, where $∆$ is the Laplacian on $\boldsymbol{R}^n$ and $V ≠ 0$ is a nonnegative function satisfying the reverse Hölder's inequality. Let $[b, T]$ be the commutator generated by the Campanato-type function $b ∈ Λ^β_{\mathcal{L}}$ and the Riesz transform associated with Schrödinger operator $T = ∇(−∆+V )^{\frac{1}{2}}$. In the paper, we establish the boundedness of $[b, T]$ on Lebesgue spaces and Campanato-type spaces.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2015.04.01}, url = {http://global-sci.org/intro/article_detail/cmr/18911.html} }Let $\mathcal{L} = −∆ + V$ be a Schrödinger operator on $\boldsymbol{R}^n , n > 3$, where $∆$ is the Laplacian on $\boldsymbol{R}^n$ and $V ≠ 0$ is a nonnegative function satisfying the reverse Hölder's inequality. Let $[b, T]$ be the commutator generated by the Campanato-type function $b ∈ Λ^β_{\mathcal{L}}$ and the Riesz transform associated with Schrödinger operator $T = ∇(−∆+V )^{\frac{1}{2}}$. In the paper, we establish the boundedness of $[b, T]$ on Lebesgue spaces and Campanato-type spaces.