- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 32 (2016), pp. 241-248.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
In this paper, we study a class of ruin problems, in which premiums and claims are dependent. Under the assumption that premium income is a stochastic process, we raise the model that premiums and claims are dependent, give its numerical characteristics and the ruin probability of the individual risk model in the surplus process. In addition, we promote the number of insurance policies to a Poisson process with parameter $λ$, using martingale methods to obtain the upper bound of the ultimate ruin probability.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2016.03.06}, url = {http://global-sci.org/intro/article_detail/cmr/18894.html} }In this paper, we study a class of ruin problems, in which premiums and claims are dependent. Under the assumption that premium income is a stochastic process, we raise the model that premiums and claims are dependent, give its numerical characteristics and the ruin probability of the individual risk model in the surplus process. In addition, we promote the number of insurance policies to a Poisson process with parameter $λ$, using martingale methods to obtain the upper bound of the ultimate ruin probability.