- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 32 (2016), pp. 1-38.
Published online: 2021-03
Cited by
- BibTex
- RIS
- TXT
We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero for planar graphs, and to be infinite for non-planar graphs which do not admit a drawing with only triple crossings. In this paper, we determine the triple crossing numbers for all complete multipartite graphs which include all complete graphs.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2016.01.01}, url = {http://global-sci.org/intro/article_detail/cmr/18660.html} }We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero for planar graphs, and to be infinite for non-planar graphs which do not admit a drawing with only triple crossings. In this paper, we determine the triple crossing numbers for all complete multipartite graphs which include all complete graphs.