- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
This paper concerns the approximate controllability of the initial-boundary problem of double coupled semilinear degenerate parabolic equations. The equations are degenerate at the boundary, and the control function acts in the interior of the spacial domain and acts only on one equation. We overcome the difficulty of the degeneracy of the equations to show that the problem is approximately controllable in $L^2$ by means of a fixed point theorem and some compact estimates. That is to say, for any initial and desired data in $L^2$, one can find a control function in $L^2$ such that the weak solution to the problem approximately reaches the desired data in $L^2$ at the terminal time.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2020-0061}, url = {http://global-sci.org/intro/article_detail/cmr/18360.html} }This paper concerns the approximate controllability of the initial-boundary problem of double coupled semilinear degenerate parabolic equations. The equations are degenerate at the boundary, and the control function acts in the interior of the spacial domain and acts only on one equation. We overcome the difficulty of the degeneracy of the equations to show that the problem is approximately controllable in $L^2$ by means of a fixed point theorem and some compact estimates. That is to say, for any initial and desired data in $L^2$, one can find a control function in $L^2$ such that the weak solution to the problem approximately reaches the desired data in $L^2$ at the terminal time.