- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Of concern is the scenario of a heat equation on a domain that contains a thin layer, on which the thermal conductivity is drastically different from that in the bulk. The multi-scales in the spatial variable and the thermal conductivity lead to computational difficulties, so we may think of the thin layer as a thickless surface, on which we impose "effective boundary conditions" (EBCs). These boundary conditions not only ease the computational burden, but also reveal the effect of the inclusion. In this paper, by considering the asymptotic behavior of the heat equation with interior inclusion subject to Dirichlet boundary condition, as the thickness of the thin layer shrinks, we derive, on a closed curve inside a two-dimensional domain, EBCs which include a Poisson equation on the curve, and a non-local one. It turns out that the EBCs depend on the magnitude of the thermal conductivity in the thin layer, compared to the reciprocal of its thickness.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2020-0012}, url = {http://global-sci.org/intro/article_detail/cmr/17849.html} }Of concern is the scenario of a heat equation on a domain that contains a thin layer, on which the thermal conductivity is drastically different from that in the bulk. The multi-scales in the spatial variable and the thermal conductivity lead to computational difficulties, so we may think of the thin layer as a thickless surface, on which we impose "effective boundary conditions" (EBCs). These boundary conditions not only ease the computational burden, but also reveal the effect of the inclusion. In this paper, by considering the asymptotic behavior of the heat equation with interior inclusion subject to Dirichlet boundary condition, as the thickness of the thin layer shrinks, we derive, on a closed curve inside a two-dimensional domain, EBCs which include a Poisson equation on the curve, and a non-local one. It turns out that the EBCs depend on the magnitude of the thermal conductivity in the thin layer, compared to the reciprocal of its thickness.