- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 35 (2019), pp. 354-358.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
Denote $\cal S$ to be the class of functions which are analytic, normalized and univalent in the open unit disk $\mathbb U=\{z\colon |z|<1\}$. The important subclasses of $\cal S$ are the class of starlike and convex functions, which we denote by $\cal S^*$ and $\cal C$. In this paper, we obtain the third Hankel determinant for the inverse of functions $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ belonging to $\cal S^*$ and $\cal C$.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.04.07}, url = {http://global-sci.org/intro/article_detail/cmr/13563.html} }Denote $\cal S$ to be the class of functions which are analytic, normalized and univalent in the open unit disk $\mathbb U=\{z\colon |z|<1\}$. The important subclasses of $\cal S$ are the class of starlike and convex functions, which we denote by $\cal S^*$ and $\cal C$. In this paper, we obtain the third Hankel determinant for the inverse of functions $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ belonging to $\cal S^*$ and $\cal C$.