- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
A Matrix Representation of Outer Derivations from $\frak{gl}_{0|2}$ to the Generalized Witt Lie Superalgebra
Commun. Math. Res., 35 (2019), pp. 367-376.
Published online: 2019-12
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-35-367,
author = {Zheng , Keli},
title = {A Matrix Representation of Outer Derivations from $\frak{gl}_{0|2}$ to the Generalized Witt Lie Superalgebra},
journal = {Communications in Mathematical Research },
year = {2019},
volume = {35},
number = {4},
pages = {367--376},
abstract = {
Let $\frak{gl}_{0|2}$ be a subalgebra of the general linear Lie superalgebra. In this paper, outer derivations from $\frak{gl}_{0|2}$ to the generalized Witt Lie superalgebra are completely determined by matrices.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.04.09}, url = {http://global-sci.org/intro/article_detail/cmr/13557.html} }
TY - JOUR
T1 - A Matrix Representation of Outer Derivations from $\frak{gl}_{0|2}$ to the Generalized Witt Lie Superalgebra
AU - Zheng , Keli
JO - Communications in Mathematical Research
VL - 4
SP - 367
EP - 376
PY - 2019
DA - 2019/12
SN - 35
DO - http://doi.org/10.13447/j.1674-5647.2019.04.09
UR - https://global-sci.org/intro/article_detail/cmr/13557.html
KW - outer derivation, inner derivation, matrix representation, generalized
Witt Lie superalgebra.
AB -
Let $\frak{gl}_{0|2}$ be a subalgebra of the general linear Lie superalgebra. In this paper, outer derivations from $\frak{gl}_{0|2}$ to the generalized Witt Lie superalgebra are completely determined by matrices.
Zheng , Keli. (2019). A Matrix Representation of Outer Derivations from $\frak{gl}_{0|2}$ to the Generalized Witt Lie Superalgebra.
Communications in Mathematical Research . 35 (4).
367-376.
doi:10.13447/j.1674-5647.2019.04.09
Copy to clipboard