- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 35 (2019), pp. 219-224.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.03.03}, url = {http://global-sci.org/intro/article_detail/cmr/13527.html} }In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method.