- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 34 (2018), pp. 184-192.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
By using the hypergeometric function defined by the Dziok-Srivastava operator, a new subclass of meromorphic function is introdued. We obtain Fekete-Szegö inequalities for the meromorphic function $f(z)$ for which $\alpha-\dfrac{1+\alpha\bigg\{1+\dfrac{z[_lI_mf(z)]''}{[_lI_mf(z)]'}\bigg\}}{\dfrac{z[_lI_mf(z)]'}{_lI_mf(z)}}$ $\prec\varphi (z)$ $\Big(\alpha\in{\bf C}-\Big\{\dfrac{1}{2},\,1\Big\}\Big)$.
By using the hypergeometric function defined by the Dziok-Srivastava operator, a new subclass of meromorphic function is introdued. We obtain Fekete-Szegö inequalities for the meromorphic function $f(z)$ for which $\alpha-\dfrac{1+\alpha\bigg\{1+\dfrac{z[_lI_mf(z)]''}{[_lI_mf(z)]'}\bigg\}}{\dfrac{z[_lI_mf(z)]'}{_lI_mf(z)}}$ $\prec\varphi (z)$ $\Big(\alpha\in{\bf C}-\Big\{\dfrac{1}{2},\,1\Big\}\Big)$.