- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 34 (2018), pp. 106-116.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2018.02.02}, url = {http://global-sci.org/intro/article_detail/cmr/13510.html} }In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.