- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
The Twisted Transfer Variety
Commun. Math. Res., 34 (2018), pp. 335-342.
Published online: 2019-12
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-34-335,
author = {Chen , Yang and Nan , Jizhu},
title = {The Twisted Transfer Variety},
journal = {Communications in Mathematical Research },
year = {2019},
volume = {34},
number = {4},
pages = {335--342},
abstract = {
In this paper, we describe the variety defined by the twisted transfer ideal. It turns out that this variety is nothing but the union of reflecting hyperplanes and the fixed subspaces of the elements of order $p$ in $G$.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2018.04.06}, url = {http://global-sci.org/intro/article_detail/cmr/13500.html} }
TY - JOUR
T1 - The Twisted Transfer Variety
AU - Chen , Yang
AU - Nan , Jizhu
JO - Communications in Mathematical Research
VL - 4
SP - 335
EP - 342
PY - 2019
DA - 2019/12
SN - 34
DO - http://doi.org/10.13447/j.1674-5647.2018.04.06
UR - https://global-sci.org/intro/article_detail/cmr/13500.html
KW - invariant theory, twisted transfer, twisted transfer variety
AB -
In this paper, we describe the variety defined by the twisted transfer ideal. It turns out that this variety is nothing but the union of reflecting hyperplanes and the fixed subspaces of the elements of order $p$ in $G$.
Chen , Yang and Nan , Jizhu. (2019). The Twisted Transfer Variety.
Communications in Mathematical Research . 34 (4).
335-342.
doi:10.13447/j.1674-5647.2018.04.06
Copy to clipboard