- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Pullback Attractor of a Non-Autonomous Model for Epitaxial Growth
Commun. Math. Res., 34 (2018), pp. 289-295.
Published online: 2019-12
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-34-289,
author = {Duan , Ning and Zhao , Xiaopeng},
title = {Pullback Attractor of a Non-Autonomous Model for Epitaxial Growth},
journal = {Communications in Mathematical Research },
year = {2019},
volume = {34},
number = {4},
pages = {289--295},
abstract = {
In this paper, we consider a non-autonomous model for epitaxial growth. It is shown that a pullback attractor of the model exists when the external force has exponential growth.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2018.04.01}, url = {http://global-sci.org/intro/article_detail/cmr/13497.html} }
TY - JOUR
T1 - Pullback Attractor of a Non-Autonomous Model for Epitaxial Growth
AU - Duan , Ning
AU - Zhao , Xiaopeng
JO - Communications in Mathematical Research
VL - 4
SP - 289
EP - 295
PY - 2019
DA - 2019/12
SN - 34
DO - http://doi.org/10.13447/j.1674-5647.2018.04.01
UR - https://global-sci.org/intro/article_detail/cmr/13497.html
KW - pullback attractor, non-autonomous model, asymptotic compactness
AB -
In this paper, we consider a non-autonomous model for epitaxial growth. It is shown that a pullback attractor of the model exists when the external force has exponential growth.
Duan , Ning and Zhao , Xiaopeng. (2019). Pullback Attractor of a Non-Autonomous Model for Epitaxial Growth.
Communications in Mathematical Research . 34 (4).
289-295.
doi:10.13447/j.1674-5647.2018.04.01
Copy to clipboard