- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 35 (2019), pp. 159-179.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
This paper considers the thermoelastic beam system of type III with friction dissipations acting on the whole system. By using the methods developed by Chueshov and Lasiecka, we get the quasi-stability property of the system and obtain the existence of a global attractor with finite fractal dimension. Result on exponential attractors of the system is also proved.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.02.07}, url = {http://global-sci.org/intro/article_detail/cmr/13491.html} }This paper considers the thermoelastic beam system of type III with friction dissipations acting on the whole system. By using the methods developed by Chueshov and Lasiecka, we get the quasi-stability property of the system and obtain the existence of a global attractor with finite fractal dimension. Result on exponential attractors of the system is also proved.