- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 35 (2019), pp. 21-26.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modified Bessel function of the second kind, which unified the formulas of fundamental solution of Helmholtz equation, elliptic type Euler-Poisson-Darboux equation and Laplace equation in any dimensional space.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.01.03}, url = {http://global-sci.org/intro/article_detail/cmr/13471.html} }Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modified Bessel function of the second kind, which unified the formulas of fundamental solution of Helmholtz equation, elliptic type Euler-Poisson-Darboux equation and Laplace equation in any dimensional space.