- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 33 (2017), pp. 1-7.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
We study the global behavior of complete minimal $\delta$-stable hypersurfaces in $\mathbf{R}^{n+1}$ by using $L^2$-harmonic 1-forms. We show that a complete minimal $\delta$-stable $\bigg(\delta>\dfrac{(n-1)^2}{n^2}\bigg)$ hypersurface in $\mathbf{R}^{n+1}$ has only one end. We also obtain two vanishing theorems of complete noncompact quaternionic manifolds satisfying the weighted Poincaré inequality. These results are improvements of the first author's theorems on hypersurfaces and quaternionic Kähler manifolds.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2017.01.01}, url = {http://global-sci.org/intro/article_detail/cmr/13440.html} }We study the global behavior of complete minimal $\delta$-stable hypersurfaces in $\mathbf{R}^{n+1}$ by using $L^2$-harmonic 1-forms. We show that a complete minimal $\delta$-stable $\bigg(\delta>\dfrac{(n-1)^2}{n^2}\bigg)$ hypersurface in $\mathbf{R}^{n+1}$ has only one end. We also obtain two vanishing theorems of complete noncompact quaternionic manifolds satisfying the weighted Poincaré inequality. These results are improvements of the first author's theorems on hypersurfaces and quaternionic Kähler manifolds.