- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commun. Math. Res., 33 (2017), pp. 160-176.
Published online: 2019-11
Cited by
- BibTex
- RIS
- TXT
In this paper, first we investigate the invariant rings of the finite groups $G ≤ GL(n, F_q)$ generated by $i$-transvections and $i$-reflections with given invariant subspaces $H$ over a finite field $F_q$ in the modular case. Then we are concerned with general groups $G_i(ω)$ and $G_i(ω)^t$ named generalized transvection groups where $ω$ is a $k$-th root of unity. By constructing quotient group and tensor, we calculate their invariant rings. In the end, we determine the properties of Cohen-Macaulay, Gorenstein, complete intersection, polynomial and Poincare series of these rings.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2017.02.08}, url = {http://global-sci.org/intro/article_detail/cmr/13396.html} }In this paper, first we investigate the invariant rings of the finite groups $G ≤ GL(n, F_q)$ generated by $i$-transvections and $i$-reflections with given invariant subspaces $H$ over a finite field $F_q$ in the modular case. Then we are concerned with general groups $G_i(ω)$ and $G_i(ω)^t$ named generalized transvection groups where $ω$ is a $k$-th root of unity. By constructing quotient group and tensor, we calculate their invariant rings. In the end, we determine the properties of Cohen-Macaulay, Gorenstein, complete intersection, polynomial and Poincare series of these rings.